You are not logged in. | Log in

SIDRA

GXB

Clear Search
Updating...
Gene Symbol: --
Signal: --
Sample ID: --
Full Name--
Summary--
Links
Pubmed Articles --
User Notes --
Description

Expression data from validation cohort of children with septic shock - GSE26378 - Study subjects were either stratified in age groups (default setting) or in controls, survivors, and non-survivors

Purpose

Background: Septic shock heterogeneity has important implications for the conduct of clinical trials and individual patient management. We previously addressed this heterogeneity by indentifying 3 putative subclasses of children with septic shock based on a 100-gene expression signature corresponding to adaptive immunity and glucocorticoid receptor signaling. Herein we attempted to prospectively validate the existence of these gene expression-based subclasses in a validation cohort. Methods: Gene expression mosaics were generated from the 100 class-defining genes for 82 individual patients in the validation cohort. Patients were classified into 1 of 3 subclasses (“A”, “B”, or “C”) based on color and pattern similarity relative to reference mosaics generated from the original derivation cohort. Separate classifications were conducted by 21 individual clinicians and a computer-based algorithm. After subclassification the clinical database was mined for clinical phenotyping. Results: In the final consensus subclassification generated by clinicians, subclass A patients had a higher illness severity, as measured by illness severity scores and maximal organ failure, relative to subclasses B and C. The k coefficient across all possible inter-evaluator comparisons was 0.633. Similar observations were made based on the computer-generated subclassification. Patients in subclass A were also characterized by repression of a large number of genes having functional annotations related to zinc biology. Conclusions: We have validated the existence of subclasses of children with septic shock based on a biologically relevant, 100-gene expression signature. The subclasses can be indentified by clinicians without formal bioinformatics training, at a clinically relevant time point, and have clinically relevant phenotypic differences.

Experimental Design

Expression data from 82 children with septic shock and 21 normal controls were generated using whole blood-derived RNA samples representing the first 24 hours of admission to the pediatric intensive care unit. The controls were used for normalization. Subsequently, we used the expression data from 100 class defining genes to validate the existence of pediatric septic shock subclasses having phenotypic differences.

Experimental Variables

Septic shock (2021 ICD-10-CM code* = R65.21)

Methods

Gene expression was measured using one patient sample per chip. Image files were captured using an Affymetrix GeneChip Scanner 3000. CEL files were subsequently preprocessed using Robust Multiple-Array Average (RMA) normalization and GeneSpring GX 7.3 software (Agilent Technologies, Palo Alto, CA). All signal intensity-based data were used after RMA normalization, which specifically suppresses all but significant variation among lower intensity probe sets. All chips representing patient samples were then normalized to the respective median values of controls.

Additional Information

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26378

Platform Affymetrix HG-U133_Plus_2
No information available.
Default files:

Signal Data File

Download Annotations for Group Set:
Download Annotations for Group:
Download Ranklist:
Additional Files:

(Uploaded through the Files tab in the Annotation Tool)

GSE26378_modified1.csv

sampleset4000103_sampleannotations.csv

Your email has been sent!
Advanced
Yes No
Yes No
X-axis Y-axis Both None
Yes No
Rank Lists
Group Set
Sort By
      Bar Plot Box Plot
    Overlays
      Updating...
      Your bug report has been sent!
      Sample Set Level   Dataset Level   Gene Level
      Your note has been added
      Loading...