You are not logged in. | Log in

SIDRA

GXB

Clear Search
Updating...
Gene Symbol: --
Signal: --
Sample ID: --
Full Name--
Summary--
Links
Pubmed Articles --
User Notes --
Description

Development and Validation of a Novel Molecular Biomarker Diagnostic Test for the Early Detection of Sepsis - GSE28750

Purpose

Introduction: Sepsis is a complex immunological response to infection characterized by early hyperinflammation followed by severe and protracted immunosuppression, suggesting that a multi-marker approach has the greatest clinical utility for early detection, within a clinical environment focused on SIRS differentiation. Pre-clinical research using an equine sepsis model identified a panel of gene expression biomarkers that define the early aberrant immune activation. Thus, the primary objective was to apply these gene expression biomarkers to distinguish patients with sepsis from those who had undergone major open surgery and had clinical outcomes consistent with systemic inflammation due to physical trauma and wound healing.Methods: This was a multi-centre, prospective clinical trial conducted across 4 tertiary critical care settings in Australia. Sepsis patients were recruited if they met the 1992 Consensus Statement criteria and had clinical evidence of systemic infection based on microbiology diagnoses (n=27). Participants in the post-surgical (PS) group were recruited pre-operatively and blood samples collected within 24 hours following surgery (n=38). Healthy controls (HC) included hospital staff with no known concurrent illnesses (n=20). Each participant had minimally 5ml of PAXgene blood collected for leucocyte RNA isolation and gene expression analyses. Affymetrix array and multiplex tandem (MT)-PCR studies were conducted to evaluate transcriptional profiles in circulating white blood cells applying a set of 42 molecular markers that had been identified a priori. A LogitBoost algorithm was used to create a machine learning diagnostic rule to predict sepsis outcomes.Results: Based on preliminary microarray analyses comparing HC and sepsis groups. A panel of 42-gene expression markers were identified that represented key innate and adaptive immune function, cell cycling, WBC differentiation, extracellular remodelling and immune modulation pathways. Comparisons against GEO data confirmed the definitive separation of the sepsis cohort. Quantitative PCR results suggest the capacity for this test to differentiate severe systemic inflammation from HC is 92%. AUC ROC curve findings demonstrated sepsis prediction within a mixed inflammatory population, was between 86 - 92%.Conclusions: This novel molecular biomarker test has a clinically relevant sensitivity and specificity profile, and has the capacity for early detection of sepsis via the monitoring of critical care patients.GEO Note: Data made available represents the preliminary microarray investigation performed on Human U133 Plus 2.0 GeneChips (Affymetrix), assaying 41 patient samples (Sepsis n=10, Post-Surgical n=11, Control n=20).

Experimental Design

This was a multi-centre, prospective clinical trial conducted across 4 tertiary critical care settings in Australia. Sepsis patients were recruited if they met the 1992 Consensus Statement criteria and had clinical evidence of systemic infection based on microbiology diagnoses (n=27). Participants in the post-surgical (PS) group were recruited pre-operatively and blood samples collected within 24 hours following surgery (n=38). Healthy controls (HC) included hospital staff with no known concurrent illnesses (n=20). Each participant had minimally 5ml of PAXgene blood collected for leucocyte RNA isolation and gene expression analyses. The GEO data represents the preliminary microarray investigation performed on Human U133 Plus 2.0 GeneChips (Affymetrix), assaying 41 patient samples (Sepsis n=10, Post-Surgical n=11, Control n=20).

Experimental Variables

Sepsis (2021 ICD-10-CM code* = A41)

Methods

CHP files were generated using a combination of Affymetrix Power Tools, R and Perl scripts to filter background noise and normalise data based on a detection metric used to identify perfect match probes relative to other background probes. Differentially expressed genes were compared if the signal was >100 and the fold change was >2.0.

Additional Information

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28750

Platform Affymetrix HG-U133_Plus_2
No information available.
Default files:

Signal Data File

Download Annotations for Group Set:
Download Annotations for Group:
Download Ranklist:
Additional Files:

(Uploaded through the Files tab in the Annotation Tool)

Your email has been sent!
Advanced
Yes No
Yes No
X-axis Y-axis Both None
Yes No
Rank Lists
Group Set
Sort By
      Bar Plot Box Plot
    Overlays
      Updating...
      Your bug report has been sent!
      Sample Set Level   Dataset Level   Gene Level
      Your note has been added
      Loading...